首页|必读|视频|专访|运营|制造|监管|大数据|物联网|量子|低空经济|智能汽车|特约记者
手机|互联网|IT|5G|光通信|人工智能|云计算|芯片|报告|智慧城市|移动互联网|会展
首页 >> 头条资讯 >> 正文

字节开源MoE关键优化技术,训练成本再砍40%!内部万卡集群已部署

2025年3月11日 08:10  新浪科技  

新浪科技讯 3月10日晚间消息,字节豆包大模型团队官宣开源一项针对 MoE 架构的关键优化技术,可将大模型训练效率提升1.7倍,成本节省40%。据悉,该技术已实际应用于字节的万卡集群训练,累计帮助节省了数百万 GPU 小时训练算力。

MoE 是当前大模型的主流架构,但其在分布式训练中存在大量跨设备通信开销,严重制约了大模型训练效率和成本。以海外主流模型Mixtral-8x7B为例, 其训练过程中通信时间占比可高达 40%。针对这一难题,字节在内部研发了COMET计算-通信重叠技术,通过多项创新,大幅压缩了MoE专家通信空转时间。

相较DeepSeek近期开源的DualPipe等MoE优化方案,COMET可以像插件一样直接接入已有的MoE训练框架,支持业界绝大部分主流大模型,无需对训练框架进行侵入式改动。因简洁、通用的设计理念,该工作以5/5/5/4 的高分入选全球机器学习系统顶级会议 MLSys 2025 ,被认为“在大规模生产环境中极具应用潜力”。

具体而言, COMET 从系统层面建立了面向 MoE 的细粒度流水线编程方式,通过引入共享张量依赖解析、自适应负载分配两项关键机制,来解决通信与计算之间的粒度错配问题,并精准平衡通信与计算负载,最终大幅提升MoE流水线整体效率。 引入COMET后,单个 MoE 层上可实现 1.96 倍加速、端到端平均 1.71 倍效率提升,且在不同并行策略、输入规模及硬件环境下均表现稳定。

值得一提的是,COMET 与Deepseek 研发的DualPipe方案还可以联合使用。在降低MoE通信开销上,COMET 采用了计算-通信融合算子的优化方式, DualPipe则通过排布算子来掩盖通信,两种方案并不冲突,结合使用或将更大幅度压缩模型训练成本。

目前,COMET支持多种MoE并行模式,部署灵活、方便。同时,COMET核心代码已开源,并向开发者提供了一套友好的 Python API,计划兼容 Triton 等编译生态。(罗宁)

编 辑:魏德龄
飞象网版权及免责声明:
1.本网刊载内容,凡注明来源为“飞象网”和“飞象原创”皆属飞象网版权所有,未经允许禁止转载、摘编及镜像,违者必究。对于经过授权可以转载,请必须保持转载文章、图像、音视频的完整性,并完整标注作者信息和飞象网来源。
2.凡注明“来源:XXXX”的作品,均转载自其它媒体,在于传播更多行业信息,并不代表本网赞同其观点和对其真实性负责。
3.如因作品内容、版权和其它问题,请在相关作品刊发之日起30日内与本网联系,我们将第一时间予以处理。
本站联系电话为86-010-87765777,邮件后缀为cctime.com,冒充本站员工以任何其他联系方式,进行的“内容核实”、“商务联系”等行为,均不能代表本站。本站拥有对此声明的最终解释权。
相关新闻              
 
人物
vivo胡柏山:手机行业是最典型的新质生产力代表
精彩专题
聚焦2025全国两会
2025年世界移动通信大会
低空经济2025:助力中国经济腾飞,成就高质量发展
2024通信业年终盘点
CCTIME推荐
关于我们 | 广告报价 | 联系我们 | 隐私声明 | 本站地图
CCTIME飞象网 CopyRight © 2007-2024 By CCTIME.COM
京ICP备08004280号-1  电信与信息服务业务经营许可证080234号 京公网安备110105000771号
公司名称: 北京飞象互动文化传媒有限公司
未经书面许可,禁止转载、摘编、复制、镜像